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Dark Matter
Ωmh2 = 0.1358+0.0037

−0.0036

Ωbh2 = 0.02267+0.00058
−0.00059

WMAP 5-year
Type 1a supernovae

Baryon Acoustic Oscillations 
ΩDMh2 = 0.1131+0.0037

−0.0036

Ωh2 = 0.10 3×10−26 cm3s−1

〈σann|v|〉

relic abundance for
thermal freeze-out:

Jungman, Kamionkowski and Greist

a particle with a weak-scale 
annihilation cross-section would 
have the correct relic abundance 



PAMELA
a Payload for Antimatter Matter Exploration

and Light-nuclei Astrophysics

• Satellite experiment launched 
in 2006

• Primary goal is to study the 
antimatter component of CRs, 
specifically to measure spectra 
of antiprotons and positrons

• Core of the instrument is a 
magnetic spectrometer that 
allows identification of 
positively and negatively 
charged particles 



PAMELA Positron Fraction φe+

φe+ + φe−

Adriani et al.   arXiv:0810.4995



PAMELA Positron Fraction φe+

φe+ + φe−

Adriani et al.   arXiv:0810.4995

ratio calculated 
assuming only 

secondary production



ATIC
Advanced Thin Ionization Calorimeter

• Balloon experiment that 
collected data for five 
weeks in 2000 and 2003 
and two weeks in 2007

• Measures total electronic 
flux (e+ + e-) in the energy 
range ~ 20-2400 GeV

• Can’t differentiate 
between electrons and 
positrons



ATIC
Electron Spectrum (e+ + e-)

J. Chang et al.   Nature 456 362-365 (2008)



ATIC
Electron Spectrum (e+ + e-)

• “background” can be 
well described by a 
power law

J. Chang et al.   Nature 456 362-365 (2008)

E−3.2

∼ E−3.2



ATIC
Electron Spectrum (e+ + e-)

• “background” can be 
well described by a 
power law

J. Chang et al.   Nature 456 362-365 (2008)

region of excess

E−3.2

• Excess from 
~300-800 GeV 
corresponding to 70 
excess electrons out 
of 210 total

∼ E−3.2



ATIC
Electron Spectrum (e+ + e-)

• “background” can be 
well described by a 
power law

J. Chang et al.   Nature 456 362-365 (2008)

cut-off

region of excess

E−3.2

• Excess from 
~300-800 GeV 
corresponding to 70 
excess electrons out 
of 210 total

• Sharp cut-off in 
excess at ~800 GeV

∼ E−3.2



• Extrapolation of the signal at PAMELA naturally leads to 
an excess in the ATIC energy range similar to the one 
observed

• This suggests that these two signals arise from the same 
source

PAMELA ATIC



Possible Explanations For Excess High Energy 
Electrons and Positrons

• Nearby astrophysical object(s), e.g. pulsars

Χ

Χ

? .
.
.

SM particles
including e+ e- 

• Dark Matter Annihilations

Büsching et al.   arXiv:0804.0220
Hooper et al.   arXiv:0810.1527
Profumo   arXiv:0812.4457



GALPROP

Computes the steady-state numerical solution to the propagation equation

incorporates:
spatial diffusion

∂n

∂t
= q("r, E) + "∇ · (Dxx

"∇n) +
∂

∂E
[b("r, E) n]− 1

τf
n− 1

τr
n

particle number density per unit energyn = n(!r, E, t)

energy losses due to ionization, Coulomb interactions

fragmentation
decay
diffusive reacceleration
convection on Galactic winds

bremsstrahlung, inverse Compton and synchrotron



GALPROP
DM Halo

Galactic Magnetic Field

Btot = B0 e−(R−R!)/RB−|z|/zB

with B0 = 5 µG, RB = 10 kpc, zB = 2 kpc

Einasto Profile:

NFW Profile: ρ(r) = ρ0
rc

r

1
(1 + r

rc
)2

, rc = 20.0 kpc

we take α = 0.17,ρ(R!) = 0.30− 0.35 GeV cm−3

0.13≤ α ≤ 0.22
ρ(r) = ρ0 exp[− 2

α ( rα−Rα
!

rα
−2

)], rα
−2 = 25.0 kpc



Cholis, LG, Hooper, Simet, Weiner   arXiv:0809.1683
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eXciting Dark Matter (XDM)
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eXciting Dark Matter (XDM)
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eXciting Dark Matter (XDM)
INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory)

has measured the 511 keV line coming from direct annihilation of 
e+ e- pairs and decay of para-positronium

• Signal corresponds to an annihilation rate of                  
e+ e- pairs/sec

• Signal is strongest in GC indicating that this region has 
the largest concentration of annihilation

• It is a challenge for conventional astrophysical sources 
to explain the signal

3× 1042



eXciting Dark Matter (XDM)

• Excited state has an energy at least 
2me above the ground state

• Energy needed for the excitation 
process comes from the kinetic energy 
of WIMPS (inelastic collisions)

• Coupling to SM occurs through a light 
mediator which couples to the higgs

• DM has weak-scale mass

Finkbeiner and Weiner (astro-ph/0702587) proposed that the e+ e- 
pairs are created in the decay of an excited state of dark matter
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• Annihilation modes with hard positron spectra also fit ATIC well
• ATIC requires much higher DM masses than PAMELA
• Large boost factors are required

ATIC Electron Flux
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• Annihilation modes with hard positron spectra also fit ATIC well
• ATIC requires much higher DM masses than PAMELA
• Large boost factors are required
• Sharp fall-off at DM mass for e+ e- channels (including XDM)

ATIC Electron Flux



 100

 10  100  1000
E3  d

N/
dE

 (G
eV

2  m
-2

 s
-1

 s
r-1

)
Energy (GeV)

XDM !+!- Channel

DM Contribution

m" = 3.5 TeV, BF = 8000 (DM + Background)
m" = 2.5 TeV, BF = 4600 (DM + Background)
m" = 1.5 TeV, BF = 2100 (DM + Background)
Background
ATIC Data
PPB-BETS Data

 100

 10  100  1000

E3  d
N/

dE
 (G

eV
2  m

-2
 s

-1
 s

r-1
)

Energy (GeV)

!+!- Channel

DM Contribution

m" = 3.0 TeV, BF = 6500 (DM + Background)
m" = 2.0 TeV, BF = 3200 (DM + Background)
m" = 1.0 TeV, BF = 1000 (DM + Background)
Background
ATIC Data
PPB-BETS Data

Cholis, Dobler, Finkbeiner, LG, Weiner   arXiv:0811.3641

ATIC Electron Flux

• Fits for annihilation into taus are not as good
• Spectrum is softer, so low energy e+ are mildly over

produced while high energy e+ are underproduced
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W+ W− −→ e+e−

W+ W− −→ µ+µ−

~10.8%

~10.6%

ATIC Electron Flux

• Fits for annihilation into W’s are poor
• Most positrons from W’s come from hadronic decay chain 
and so are soft



PAMELA Antiproton Fraction p

p

Donato et al   arXiv:0810.5292

• Donato et al. found that 
for a 1TeV DM particle 
annihilating into W’s, the 
BF cannot exceed 40

• Our fits to ATIC 
(BF~3200) and 
PAMELA (BF~1000) 
require BF’s that are 
seriously at odds with 
this constraint
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In summary,
DM annihilations into charged leptons, directly or through a 

light mediator (XDM scenario), can explain both the PAMELA 
and ATIC anomalies with similar, although large, boost factors

Cholis, Dobler, Finkbeiner, LG, Weiner   arXiv:0811.3641

ATIC PAMELA



How can we explain the large annihilation rates?

We expect some enhancement of the signal from substructure in the 
DM halo.  This is just a restatement of the relation              .  But this is 
expected to contribute by a factor of 10 or less.

Theories involving a light force carrier can have an enhanced 
annihilation cross-section at low velocities due to the “Sommerfeld 
enhancement” where                  .  The cross-section can be increased 
by up to two orders of magnitude in subhalos where the velocity 
dispersion is much lower than in the halo.

The presence of a nearby clump of Dark Matter can give enhanced 
particle fluxes that would be interpreted as large annihilation rates, 
while the cross-section and DM density take standard values.

〈
ρ2

〉
≥ 〈ρ〉2

σv ∼ 1/v



• Measures microwave 
emission at 22.5, 32.7, 
40.6, 60.7, 93.1 GHz

• Galactic foreground 
signals include thermal 
dust, free-free (thermal 
bremsstrahlung), 
“ordinary” synchrotron 
from relativistic e- 
accelerated by SN, and 
spinning dust

22.5 GHz

WMAP
Wilkinson Microwave Anisotropy Probe



WMAP “Haze”
• Additional emission not 

correlated with known 
foregrounds

• Distributed with 
approximate radial 
symmetry within ~20° of 
GC and falls rapidly with 
distance from GC

• Spectrally consistent 
with hard synchrotron

Finkbeiner   astro-ph/0311547
Finkbeiner, Dobler   arXiv:0712:1038
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WMAP “Haze”
• Finkbeiner proposed 

that the Haze could be 
due to high energy e+ e- 
coming from DM 
annihilations

• Hooper et al (2007), 
Cholis, LG and Weiner 
(2008) confirmed that 
this explanation is valid

• It is unlikely that the 
high energy e+ e- are 
coming from standard 
astrophysical sources

Hooper, Finkbeiner, Dobler   arXiv:0705:3655

Angle from GC (deg)

NFW
ρ(r) ∝ r -1.2 



WMAP “Haze”

The same annihilation channels into charged leptons, 
directly or through a light mediator, that gave good fits to 

ATIC and PAMELA give good fits to the Haze 
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• We have evidence for a population of e+ e- from 
DM annihilation in the center of the Galaxy 

• Energies of these particles span the range 
between ~10 GeV and more than 100 GeV

• Electrons with these energies can Inverse 
Compton Scatter (ICS) lower energy optical 
photons

• These could be visible in the center of the Galaxy 
where the DM density is high



What energies do these ICS photons have?

Eupscatter = 2Einitialγ2

For optical photons with energies ~ eV and electrons 
with energies of 100 GeV, the upscattered photon will 

have an energy of 80 GeV

EGRET has measured gamma rays, but not with any 
accuracy above ~10 GeV, however

This is precisely in the energy range of Fermi/GLAST



• Launched in June 2008

• LAT (Large Area Telescope) measures gamma rays in 
the energy range 20 MeV - 300 GeV with a field of 
view ~twice that of EGRET and 50 times the sensitivity 
at 100 MeV (and more at higher energies)

• GBM (Glast Burst Monitor) measures gamma ray 
bursts in energy range 8 keV - 25 MeV

Fermi
Gamma-ray Space Telescope



Background Gamma Ray Flux
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Gamma Ray Flux χ χ −→ e+e−

Fermi limit

best-fit to ATIC

normalized to Haze
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Gamma Ray Flux χ χ −→ e+e−

Fermi limit
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Annihilation rate in the center of the Galaxy may be different from that at 
our galactic position

We normalize the annihilation rate to that of the Haze, the signal from 
the Galactic Center

Uncertainties in Gamma Ray Flux

Magnetic field in the center of the Galaxy is not well known
We estimate the uncertainties in the boosts for the Haze to be ~2

There is some uncertainty in the ISRF 
A decrease in the ISRF would result in less power to ICS and more 
power to synchrotron resulting in an over-estimation of the ICS signal

There is some uncertainty in the diffusion parameters
An increase in the diffusion coefficient would result in less ICS and less 
synchrotron, as the electrons don’t spend as much time in the center of 
the Galaxy
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DM Synchrotron
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Gamma Ray Flux
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• ATIC and PAMELA indicate an excess of local e+ e- with energies ~10 
GeV to more than 500 GeV

• The WMAP Haze indicates an excess of e+ e- with comparable 
energies in the Galactic Center

• These excesses can be explained in terms of DM annihilating 
dominantly into leptons, either directly or through a light mediator 
(XDM scenario)

• Similar, though large, annihilation rates are required to explain all 
three measurements

• The excess population of e+ e- will contribute to the gamma ray signal 
in the energy range above 10 GeV, which may be observable by 
Fermi

In summary


